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LElTER TO THE EDITOR 

Internal Arnold diffusion and chaos thresholds in coupled 
symplectic maps 
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Physics Department, University of Wuppertal, Gauss-Strasse 20, D-5600 Wuppertal 1, 
Federal Republic of Germany 

Received 10 November 1987 

Abstract. We investigate numerically how typical trajectories f i l l  the phase space in 
low-dimensional symplectic (Hamiltonian) maps with finite phase space. We do not find 
any sign of a ‘chaos threshold’ as reported by other authors when the non-linearity 
parameters are increased. Instead, as expected from Arnold diffusion, we find that single 
trajectories f i l l  most (if  not all) of the coarse-grained phase space even for very small 
non-linearities. Due to the ‘stickiness’ of tori also observed in two-dimensional maps, this 
filling is much slower than what one might expect naively and is possibly described by 
power laws. The ‘chaos threshold’ observed in a previous paper is explained as a trivial 
effect. 

It is well known that non-integrable Hamiltonian systems with two degrees of freedom 
(having two-dimensional PoincarC plots) are in general not ergodic [l] .  Phase space 
separates there into chaotic domains and into tori on which the motion is regular. 
Even though the chaotic orbits are dense, a trajectory cannot penetrate through a torus 
and thus remains restricted to the regions of phase space accessible from the initial point. 

This is no longer so for systems with more than two degrees of freedom. There, 
one expects also that chaotic regions and tori both should have finite measure. Hence, 
a random initial point should have finite probabilities both for staying on a torus and 
for moving chaotically. But there, tori have dimensions of at most half of the dimension- 
ality of phase space, and they cannot separate phase space topologically. This U priori 
chance of a chaotic trajectory to access all of phase space is called Arnold diffusion. 

In a system subject to external noise (not destroying symplecticity !), this Arnold 
diffusion should effectively destroy all regular motions: an infinitesimally small amount 
of noise is sufficient to push a regular trajectory off its torus. While this has no effect 
in systems with two degrees of freedom since the new chaotic trajectory will stay 
squeezed between other nearby tori, it can have a big effect in higher dimensions. One 
might conjecture that the same effect is played by round-off errors in computer 
simulations, but this is not at all clear. The main reason is that these errors are not 
random (even if the programmer cannot control them), but fully deterministic. Thus, 
they could have the opposite effect of forcing a trajectory into a periodic orbit, 
suppressing thereby the diffusion. 

It is well known that Arnold diffusion is very slow. The reason is the ‘stickiness’ 
of tori: if a chaotic trajectory comes close to the boundary of the chaotic domain, it 
behaves essentially regularly and has to follow that boundary. The reason is simply 
that on the boundary the Lyapunov exponents are all zero, and thus the trajectory 
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cannot diverge from the regular trajectory on the boundary nearest to it. This is very 
clearly seen in simulations of 213 maps like, e.g., the standard map 

p ’ = p - k s i n x  mod 277 

x ’ = x + p ’  mod 277. 

In  these systems, the stickiness is even enhanced by ‘cantori’ which are invariant sets 
resulting from tori which have just broken up. They act as very efficient barriers [2]. 

A priori one might also guess that these effects are smaller in higher dimensions, 
thus leading to increasingly larger chaotic regions and smaller timescales as dimension- 
ality increases. 

This is not exactly what is reported in a large number of papers [3-61. It was found 
there that there are sharp thresholds in the non-linearity parameters (energy in flows, 
coupling constants in maps) such that the system is ergodic above the threshold and 
strongly non-ergodic below. This was found in flows [3-51 (Fermi-Pasta-Ulam a and 
p models, coupled Lennard-Jones potentials) as well as in maps [ 6 ] ,  in the limit of 
large systems. 

In contrast to this, we found in recent simulations [7] that there was no large-scale 
breaking of ergodicity for coupled standard maps 

p;  = p, + k sin x, + p [ sin( x, + , - x, ) + sin( x, -, - x, ) ]  mod 277 
(2) 

x:, = x, +p’ ,  

with n = 1 , .  . . , N,  and with xN+, = x, .  In these simulations, we computed the effective 
Lyapunov exponents by following the map and the tangent map over typically -107-108 
iterations and estimating the Lyapunov exponents from T = 16 to T = 8192 successive 
iterations. Starting values were chosen at random. For instance, for k = 1.48, p = 0.25 
and N = 3 ,  the same Lyapunov exponent spectrum was found for -99.8% of all 
trajectories. It was only a small fraction (-2 x of the trajectories which seemed 
to stick to regular tori. Similar results were found for other non-linearity parameters 
and for larger values of N. 

It was found at the same time that there are very long timescales involved, as the 
fluctuations in the Lyapunov spectrum decreased only very slowly with T. Typically, 
these fluctuations did not decrease - 1 / J T  as expected naively from a central limit 
behaviour, but as a smaller power of T. Results are reproduced in figure 1. On the 
basis of the speed of this convergence, we could not rule out that even the few ‘atypical’ 
trajectories will finally become ergodic. 

This suggests strongly that the system is ergodic nearly everywhere, at least in the 
version implemented on our computer. As we have said before, round-off errors might 
(I priori have a big effect. One effect of round-off errors could be the levelling off of 
the curves in figure 1 at large T. The bulk of our  simulations were done with 64-bit 
accuracy (on a CYBER 205 and on a MICRO-VAX). Test runs with 120-bit and 60-bit 
accuracy on a CYBER 175 showed no systematic effect except possibly for large 
non-linearities, although individual trajectories are of course different on different 
machines. Thus it seems that the accuracy of our simulation is indeed sufficient. 
Systematic deviations were only seen in test runs with 32-bit arithmetic (see below). 

Unfortunately, the above simulations d o  not really prove that the system becomes 
ergodic since different parts in phase space could by chance have the same Lyapunov 
exponents. In order to test the ergodicity directly, and also to see Arnold diffusion 
directly, we did the following. 
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Figure 1. Fluctuations of effective Lyapunov exponents for (2) with k = 1.02, p = 0.25 and 
different values of N and i :  0, N = 7 ,  i = 4 ;  U, N =3,  i = 2 ;  A N =4 ,  i = 2 ;  0, N = 5 ,  
i = 3; 0, N = 8 ,  i = 5 ;  M, N = 2, i = 1; A, N = 2, i = 2. The quantity A,(  T ) ,  defined in [7], 
is the mean square deviation of A ,  as estimated from a finite trajectory (length T )  from 
the true A , ,  multiplied by T It would be constant i f  there were no long-range effects due 
to 'sticky' tori and cantori. 

We divided phase space into M Z N  boxes by dividing every x, and p n  interval into 
M bins each. This was done for N = 2 with M up to 46, and for N = 3 with M up 
to 12. Unfortunately, we could not do this for larger N, without going to unreasonably 
coarse grids. The results of these runs are summarised in figures 2-4. 

T 

Figure 2. Number of boxes in hypercubic grids of a 
4D phase space not yet visited by typical single trajec- 
tories of ( 2 )  with N = 2,  k = 0.8 and p = 0.2 ,  after 7 
iterations with 120-bit arithmetic: A, 464 boxes; B, 
404 boxes; C, 324 boxes. 
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Figure 3. Number of unvisited boxes in hypercubic 
grids with ( A )  N = 2 and ( B )  N = 3. Parameters in 
both cases are k = 0.8, p = 0 . 2 ;  mesh sizes are ( A )  
324, ( B )  10'. 
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Figure 4. Average nuinbers of unvisited boxes in 4D phase space (h' = 2) ,  obtained by 
averaging over 30 trajectories each. 0: k = 0.3, p = 0.1, 254 boxes; 0:  k = 0.8. p = 0.2, 254 
boxes; D: k =0.3, p -0.1, lo4 boxes; 0: k = 0 . 3 ,  p =0.1, 104boxes, half precesion ( 3 2  
bits). The straight lines are power law fits. The smooth curve is the prediction of a random 
jump process. 

First, we show in figure 2 typical results from the same single trajectory with N = 2, 
k = 0.8 and p = 0.2. We see that this trajectory fills phase space quite efficiently at all 
levels of coarse graining. For short times, the filling is as one would expect from a 
random map: the fraction of unvisited boxes decreases exponentially, with the rate 
being just l/(total number of boxes). But for larger T the filling slows down since 
new areas are filled only in very rare bursts which remind one of the breaking through 
cantori in 2~ maps. These siniulations were done with 120-bit words. To check for 
the possible effects of round-off errors, we also made simulations with 60-bit words 
(not shown). No significant systematic change was observed (though individual trajec- 
tories depend of course strongly on the round-off). 

Results for N = 2 are compared in figure 3 with those for N = 3, at roughly the 
same number of boxes. Although the non-linearity parameters there are very small, 
we see that ergodicity is clearly not more broken for N = 3 than for N = 2 .  The opposite 
is true, as we had expected from the greater ease for Arnold diffusion. 

In figure 4, we show results averaged over many (30) independent trajectories for 
the same set of parameters. These data are compatible with the asymptotic number 
of unvisited boxes decaying with a power law 

(3) 
The exponent a seems to depend both on the coarseness of the grid and on the 
parameters of the map ( a  = -0.63 for k = 0.8, p = 0.2 and 254 boxes; CY = -0.43 (resp 
-0.60) for k = 0.3, p = 0.1, 254 (resp lo4) boxes). This is in contrast to previous power 
laws suggested for symplectic maps [ 8 , 9 ]  which typically involve universal exponents. 
To estimate the effect of round-off errors, we repeated the last set of runs with half 
precision (32 bit instead of 04 bit). This time, we found a clear effect, also shown in 
figure 4, that reducing the precision suppresses Arnold diffusion. The reason for this 
seems to be that some trajectories are trapped into periodic orbits when working with 
too few digits. Anyhow, we see clearly that round-off errors cannot have enhanced 
Arnold diffusion as one might have feared. 

Ncmpfy( T )  -constant x T-".  
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Very similar in spirit to our  box filling is the investigation by Farmer and Umberger 
[8] who observed how the number of visited boxes (for T + m )  in the standard map 
scales with the grid size E = 1/M. From the dependence on E they concluded that the 
connected chaotic region is a fat fractal. We cannot d o  the same here since the number 
of visited boxes does not seem to converge. Alternatively, some authors claimed to 
have found fractal trajectories [lo], but it seems they have been misled by the slowness 
of Arnold diffusion [ I l l .  

These results strongly suggest that ergodicity holds down to much smaller non- 
linearities than studied in [7]. In order to test this we computed Lyapunov exponents 
for trajectories with random starting points and  also for N = 2 ,  k = 0.8 and p = 0.2. 
The distributions of the largest Lyapunov exponents from 34 500 runs with T = 51 200 
and  from 69 000 runs with T = 25 600 are shown in figure 5. The integrals over the 
peaks near A = O  (up  to A SO.15) are 0.0115 and 0.0119, respectively. Given the long 
timescales involved, this indicates that for small non-linearity the breaking of ergodicity 
is indeed as small as suggested by box counting. 

h 

Figure 5. Distributions of largest effective Lyapunov exponents for N = 2 ,  k = 0.8, p = 0.2. 
A: 69 000 trajectories (with random initial conditions) of length T = 25 600; B: 34 500 
trajectories of length T = 5 1 200. 

Let us now discuss why other authors seemed to have found chaos thresholds in 
very similar systems. The map treated in [6] is just our equation (2) with k = 0. In 
that paper, a chaos threshold was claimed to be at /? = 1, with essentially ergodic 
behaviour for p > 1 and strongly broken ergodicity for Ipl< 1. The breaking of 
ergodicity was deduced from the fact that trajectories starting as sine waves, 

P n  = o  x,, = b + a s i n ( 2 m j l  N )  (4) 
with j being a small integer, did not evolve chaotically but stayed periodic for IpI G 1 
and for sufficiently large N. 

If we set k = O  in ( 2 ) ,  the total momentum P = C , p ,  is conserved. In  order to 
decouple this zero mode, we rewrite (2) with k = 0 in terms of the relative coordinates 
and momenta [,, =x,+, -xn,  qn = p n + ,  - p n :  
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The smooth ansatz (4) for the initial conditions leads for sufficiently large N to a point 
very close to the fixed point {q,,, t,,} = O Z N  of ( 5 ) .  Whether or not a trajectory starting 
near this fixed point will be chaotic depends on whether the point is hyperbolic or 
elliptic. A linear stability analysis with an ansatz (q,,, t,,) = U exp(iq5n) gives the eigen- 
values 

A, = 1 - 2p sin’ 412 i [4p sin’ 4 / 2 ( p  sin’ 4/2 - l)]”’. (6) 

If there were no round-off errors, we should take 4 = r j /  N according to the sine wave 
ansatz, and the fixed point would be stable for all considered p. But round-off errors 
induce a small component (amongst others) with 4 = T for which A = -1 exactly at 
p = 1. For p > 1, we predict thus a transition to chaos via local checkerboard patterns 
exactly as observed in the simulations of [6]. 

Therefore, what looked like a chaos threshold in [6] is instead simply a change of 
stability of a single fixed point which has very little effect on the global amount of 
ergodicity. In particular, the phase space volume of regular orbits is unmeasurably 
small both above and below p = 1. 

The situation is less clear concerning chaos thresholds in chains of oscillators (as 
opposed to maps) [3-51. In these cases, the above argument does not apply. On the 
other hand, with the usual leap-frog method [5] these systems also become effectively 
coupled maps very similar to ( 5 )  with p “0, but with different non-linearities. Taking 
just the first two terms in the Taylor series of the non-linear terms, we can nevertheless 
compare these cases with our simulations after suitably rescaling p i  and x,. We find 
that the chaos thresholds reported in [3-51 correspond to trajectories starting off very 
close to q, = 6, = 0. Thus there is no contradiction with our present results. For example, 
it could be that these ‘thresholds’ are transient phenomena, a possibility also not ruled 
out by the authors. 

We conclude that non-ergodicity in chains of N coupled non-linear symplectic 
maps is small except possibly for very small non-linearities, and decreases with the 
number N. This is in contrast to a previous paper whose finding of a chaos threshold 
for large N is explained trivially. It is not in contradiction to the findings of chaos 
thresholds in coupled oscillators, due to the very different parameters in these papers. 
Due to the inherently finite resolution of any partition and to the very long timescales 
involved, we cannot rule out that ergodicity is broken. But for non-linearities of order 
one this breaking is very small already for N = 2 ,  and any single chaotic trajectory 
seems to be dense in phase space. The latter is just what one would have expected 
from Arnold diffusion, although Arnold diffusion is strongly non-Brownian. Rather 
than being Brownian, it seems characterised by anomalous scaling laws with non- 
universal exponents. At present, we have no theoretical explanation for this. 
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